If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-50X+48=0
a = 1; b = -50; c = +48;
Δ = b2-4ac
Δ = -502-4·1·48
Δ = 2308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2308}=\sqrt{4*577}=\sqrt{4}*\sqrt{577}=2\sqrt{577}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{577}}{2*1}=\frac{50-2\sqrt{577}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{577}}{2*1}=\frac{50+2\sqrt{577}}{2} $
| 5m-15=0 | | 3x²-4x-6=0 | | (D-D)^3z=0 | | 20x^2-50x-30=0 | | 5(x-3)+7(2-x)-4(2x+7)-3x+2=11-8(x-7)4x-(6-5x)+8-2x | | 6x4/9x1/2=0 | | x2−2=17 | | x-0.3x=34 | | 9q-134=180 | | 64/9x1/2=0 | | -3t–9=12 | | 5w=18+2w | | (49/81)^x+1=9/7 | | X^2+50x+48=0 | | 3=n/5-4. | | x-2/2=-4 | | p-13/6=-5 | | 9r/2=18 | | 3(v-13)=-15 | | 16=-9+5x | | X^4-13X^2-48=d | | 42=9u-3u | | 4.y=2.3 | | y+11/8=2. | | y−45=23y+131. | | 36-5x-3=51 | | 5(t+3)=55. | | (8x-7)=(x+16 | | 70-0.1x+270=56.70 | | 9(j-20)=45. | | 2x-23=20 | | y/6+7=15. |